FRIGIDA-ESSENTIAL 1 interacts genetically with FRIGIDA and FRIGIDA-LIKE 1 to promote the winter-annual habit of Arabidopsis thaliana.
نویسندگان
چکیده
Studies of natural variation have revealed that the winter-annual habit of many accessions of Arabidopsis is conferred by two genes, FRIGIDA (FRI) and FLOWERING LOCUS C (FLC), whose activities impose a vernalization requirement. To better understand the mechanism underlying the winter-annual habit, a genetic screen was performed to identify mutants that suppress the late-flowering behavior of a non-vernalized winter-annual strain. We have identified a locus, FRIGIDA-ESSENTIAL 1 (FES1), which, like FRI, is specifically required for the upregulation of FLC expression. FES1 is predicted to encode a protein with a CCCH zinc finger, but the predicted sequence does not otherwise share significant similarity with other known proteins. fes1 is a complete suppressor of FRI-mediated delayed flowering, but has little effect on the late-flowering phenotype of autonomous-pathway mutants. Thus, FES1 activity is required for the FRI-mediated winter-annual habit, but not for the similar phenotype resulting from autonomous-pathway mutations. Epistasis analysis between FES1, FRI and another specific suppressor of FRI-containing lines, FRIGIDA-LIKE 1 (FRL1), indicates that these genes do not function in a linear pathway, but instead act cooperatively to promote the expression of FLC.
منابع مشابه
FRIGIDA-related genes are required for the winter-annual habit in Arabidopsis.
In temperate climates, the prolonged cold temperature of winter serves as a seasonal landmark for winter-annual and biennial plants. In these plants, flowering is blocked before winter. In Arabidopsis thaliana, natural variation in the FRIGIDA (FRI) gene is a major determinate of the rapid-cycling vs. winter-annual flowering habits. In winter-annual accessions of Arabidopsis, FRI activity block...
متن کاملTwo FLX family members are non-redundantly required to establish the vernalization requirement in Arabidopsis
Studies of natural genetic variation for the vernalization requirement in Arabidopsis have revealed two genes, FRIGIDA and FLOWERING LOCUS C (FLC), that are determinants of the vernalization-requiring, winter-annual habit. In this study, we show that FLOWERING LOCUS C EXPRESSOR-LIKE 4 (FLL4) is essential for upregulation of FLC in winter-annual Arabidopsis accessions and establishment of a vern...
متن کاملEstablishment of the winter-annual growth habit via FRIGIDA-mediated histone methylation at FLOWERING LOCUS C in Arabidopsis.
In Arabidopsis thaliana, flowering-time variation exists among accessions, and the winter-annual (late-flowering without vernalization) versus rapid-cycling (early flowering) growth habit is typically determined by allelic variation at FRIGIDA (FRI) and FLOWERING LOCUS C (FLC). FRI upregulates the expression of FLC, a central floral repressor, to levels that inhibit flowering, resulting in the ...
متن کاملProteasome-mediated degradation of FRIGIDA modulates flowering time in Arabidopsis during vernalization.
Winter-annual accessions of Arabidopsis thaliana require either exposure to cold stress or vernalization to initiate flowering via FRIGIDA (FRI). FRI acts as a scaffold protein to recruit several chromatin modifiers that epigenetically modify flowering genes. Here, we report that proteasome-mediated FRI degradation regulates flowering during vernalization in Arabidopsis. Our genetic and biochem...
متن کاملNatural variation in Arabidopsis lyrata vernalization requirement conferred by a FRIGIDA indel polymorphism.
Species share homologous genes to a large extent, but it is not yet known to what degree the same loci have been targets for natural selection in different species. Natural variation in flowering time is determined to a large degree by 2 genes, FLOWERING LOCUS C and FRIGIDA, in Arabidopsis thaliana. Here, we examine whether FRIGIDA has a role in differences in flowering time between and within ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 132 24 شماره
صفحات -
تاریخ انتشار 2005